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FOREWORD

This report constitutes a semi-annual review of the research supported in
whole or in part under NASA Grant NsG-553 for the period January 1, 1965 -
June 30, 1965. For an overview of the work reported here, reference must be
made to the Annmual Report of Research performed under this grant by the
Electronic Systems Research Laboratory of Purdue University dated January, 1965.

This current summary of work progress over the six months' period through
June, 195, is not only a continuation of the projects described in the above-
mentioned Annual Report but is also an attempt to give a fairly comprehensive
view of the areas under research and, therefore, covers quite detailed

descriptions of the projects.
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I. LEARNING SYSTEMS

A. SIMULATED LEARNING SYSTEMS
J. C. Hancock
D. F. Mix

In the Annual Report of Research, January, 1965, a comparison among four
learning systems was made. These were 1) with teacher, 2) averaging over all
partitions, 3) decision-directed measurements, and 4) the iterative procedure.

In each system, the a priori density function for the unknown parameter is modified
by conditioning on the past samples; i.e., the decision is made by computing
p(x]wi,xi,---; xk) where

plx|w ,x,-5% ) = _[ p(x|w,,0)p(6|x ,--; x,) a0 (1)
and computing p(xlwz,xl,xz,--xk) where ‘

p(x|wy,x,5-=,x ) = I p(x|w,,9)p(2]x ,--,x_)ig (2)
and comparing the ratio of (1) over (2) to a fixed threshold.

A new "learning system" has been developed for learning the mean value of x
where only the first two moments of 6 and @ are needed--not the a priori denmsity
functions p(@) and p(d). The procedure is as follows:

Assume we know 6, and ¢°, the mean values of random variables 9 and @, respec-
tively, along with ULoz’ the variance of both 6 and @, and anz, the variance of x.
After receipt of the first (unclassified) sample X,, new estimates of 6 and @ are
calculated by . 29 .o 2
6, = 25— 2 P(w,[x)) + 6,[1 - P(w |x;)] (3)

+
% cLo

2 2
o @ +eo, x
gy = =" L.(z) - Plwplg) + A1 - Plwy|x;)] &)
%n + %10

where P(wi|xl) is the probability that x is an element of class W), given the value

of x- This probability is calculated by
p(x | w,,6,)P(w,)
Poale) = S T8 P00 ) F DR [P, P, 5)




Since the functions p(xlwi) and p(x|w2) are known except for the unknown parameters
6 and @, the "best guess” eo and ¢6 are used in (5).

The variance o 2 is now modified by

1o
o 2° 2
cmz = 10 n (6)
to
clo n
and upon receipt of the second sample Xy, new estimates are calculated by
2 2
c. 6, to
n 1 Ll X2
%n o1
2 2
o g +te
n”1 7% *2
o, * o131 ,

where P(wilxz) and P(Wélxz) are calculated, as in (5), by using the best available
guess 6, and ¢i for the unknown parameters.

Note that this procedure may be extended to the multi-dimensional case, and
also is easily extended to more than two classes. The result  of long computer
runs (10,000 samples each) is shown in Table 1, where there are three classes.
Figure 1 shows probability of error for the binary case where 6 - @ = 4 L This
probability of error curve compares favorably with the iterative procedure* intro-
duced by Fralick(l), yet the complexity is greatly reduced. By the statement that
this system compares favorably with the iterative procedure, we mean that the
results are indistinguishable. The computer time required to obtain Fig. 1 was 0.6
minutes, comparedAto 13 minutes for the corresponding graph for the iterative pro-
cedure.

REFERENCES

1. Fralick, S. C., "The Synthesis of Machines which Learn Without a Teacher," Tech.
Report No. 6103-3, Stanford Electronics Laboratories, April, 196k.

*See Fig. 4, Page 4, in the Annual Report of Research Performed under Grant NsG-553,
January, 1965.
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Table 1
Initial Final True
estimate estimate value
1.0 1.98 2.0
3.0 5.52 5.0
10.0 8.30 7.0
2.5 1.02 1.0
3.5 4,62 5.0
5.5 8.75 9.0

Actual Means st 5,1
Original Estimates at 2,-2
Noise Variance = 1.0
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B. IEARNING PROBABILITY SPACES FOR CLASSIFICATION AND RECOGNITION OF PATTERNS WITH
OR WITHOUT TEACHER

J. C. Hancock

E. A. Patrick

In the previous Annual Report, an approach using a "Fixed Bin" Model was introduced
for learning probebility spaces with or without supervision, with the objective of obtain-
ing & system which minimizes conditional probability of error. Using this fixed bin model,
the optimum system computes the conditional probability of the wvectors _I:i, i=1,2,...,m
where gi characterizes the conditional probability distribution function for the ith
class. By assuming that vectors gi and _I_"j y 1 ;é j, are statistically independent when
conditioned on past samples, an iterative solution for P(_lzi| {Xs]n) was obtained in terms
of P(gi|{xs}n_l). In general, this is subop‘(:inm.m:L since it is not, in general, true that
P22 (x,)) = P (x () PRI (x,) ).

We have developed the optimum iterative solution for this nonsupervisory problem
by approaching it as a mixture2 problem, and correctly applying Bayes Theorem. We
first establish that the class of conditional distribution ﬁmctions,?= [F(X]wi)]]l,
when forming a mixture, is identifiten.blez’3 .
A mixture of conditional distribution functions {F(Xh’i&, is given in terms of

mixing parameters {P(wi )111 as follows:
m
F(X) =) Plo;) FlX|w,) (@)
i=1
In Eq. (1), F(X) is the mixing cumulative distribution function and is an identifiable
mixture if for any other (F(xlwi)ll e?axﬂ {-ﬁ-(wi );L, then
m
F(X) =) Flo;) F(X|o,)
i=1
if and only if

Plog) = Plo,), F(X|w;) = F(X{wy), T=1,2,...,m
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We have considered those classes of c.d.f.'s which can be shown to be identifiable,
and have been able to take into account such a priori information that the c.d.f.'s differ
only by a translational parameter, are symmetrical, etc.
To see how fundamental the mixture approach is, let Bi be a vector of parameters
characterizing the c.d.f. F(XI“’J‘.)' For example, if F(lei) is known gaussian, then

By

1]

(mi,ci)- 1t F(X| ‘”i) is completely unknown and the fixed bin model is used, then

i 3 s
Bi = (Pl ,---,prl) = gl, the vector of bin probabilities. We also define the vector

of mixing parameters, B ,, = (P(wl),.. .,P(wm)) and a vector B:
B = BlUBZU, o0 ,IJBmI’Bm+l (2)
The optimum system which minimizes conditional probability of error must compute
F(BHXS}n). By Bayes Theorem

£({x},|B)f(B) |

Assuming the vector samples X1’xz"" ;X are conditionally independent, we obtain
n

n
£((x ) 18) = T, £(x,|B) *)

From Eqs. (1, 2, 3, and &) we obtain

n m
Pw, )f(X_lw,,B;) | £(B)
f(B|[xs}n)=[E=l él o1 low s ] (5)

£((x),)

The optimum iterative solution corresponding to Eq. (5) is

m .
) »B.) | £(B[(x ) )
f(BI{Xs]n) = [igl P(wl) (anwi By ] (8] s’ n-1 ®)

f(an {Xs]n-l)

It is very important to note that the iterative solution, Eq. (6), requires that

the conditional joint probability density be used in the iteration.

4,5,6

For the last three years several researchers were not able to obtain the very

important result given by Eq. (6). Fra.lickb, for example, incorrectly assumed that




6
F(ei’ejl{xé]n) = F(eiI{X%]A)F(Gjlixgln) where 6, and ej are parameters characterizing
the ith class and jth class, respectively. Such an assumption leads, in general, to

extremely suboptimum systems.

We conclude by showing that an exponentially growing solution for the binary ca.se5

is a special case of Eq. (6).

Let Xh +1 be the n+lSt sample from a mixture of continuous distribution functions

n+l

F(X ,ei) each depending on a single translational parameter 6,. The e class,

n+
active on the n+1St sample, is denoted by w§+l, and it is assumed that P(wi l) = P(wi),

n+1|

i=1,2,...,m, i.e., the class probabilities, are known.

The a posteriori probability of the event (Xh+l,w:+l) was computed by Abramsonu,
later by Dalys, by partitioning the sequence of samples xl...xn into the mutually
exclusive and exhaustive ways that they can occur. If n; denotes the rth of the m

possible partitions, Abramson and Daly noted that

n
£(X 00t () )-Zf(xnﬂ, o R, (x ) )P(R] (X)) (1)
r=h
m
=) £y, loF ™ w (X)) )PCuy ol (X3 DRGE] (X)) ®)
r=1 n
= Plog) ) 2K, Lo, a0, (x) RG] (X)) (9)
r=1
= Ploy) ) | £y lel ™ 00000, 140 o, (x) Das PGEI (23 ) (20)

where P(wi), i=l,s,...,m are assumed known.
Fralické, looking for a simplification of Eq. (10), obtained an iterative form

assuming that, if 6, is a parameter of f(x|ei,mi) and 6, a parameter of f(Xlej,wj),

i
then f(eil{xs}n,ej) = f(eiltxs}n). Fralick's result is, in general, suboptimum since,

in general, f(eil[xsln,ej) # f(ei|[xs}n) j# i. This condition is true when ej is

known, which form = 2, 8, = 91, ej = 62, corresponds to the binary on-off case without

i

supervision.



T
We show here that the desired a posteriori probability is either of the growing form
or equivalently an iterative form for the joint a posteriori probability of el ees Gm,
where the marginal a posteriori probability of ei is obtained by integrating the joint

density to get the marginal density. To show this result, we concentrate on

n n+1 n n+l

»{X.},) in Eq. (10). Applying Bayes theorem to £(6,|x ,w; (X} ) and

noting that mn l can be dropped from the expression gives

{CHE =

£yl (X)y126) 2005120 (%), )

£(6, |y (X ) ) = (11)
vore f(xn“xs}n-l’“?)
Substituting Eq. (11) in Eq (10) gives, after same calculations,
nl n -l
. Zf(x TALA SN R,
P(w,) J' £(X 1o 50 )deiz v=1 P(x, | (X)), ) (12)
r-1  £(x| (xs}n_l,u:'l)
f(e:i.| "3_1’ {xs] n-l)
such that
n+l
£og w5 0x3,) = £(o,](x) ) =
Zn'l z £(X sy n'l,(x I l,ei
v=1 n-l n-1
(x3, 1) £, ""5{x)), ;) = (13)
-1 f(xn“xs]n-l’“:-i) I s’n-1 s'n-1
mn.l z !:P(wj )f(xnl"?-l’ {xs)n-l’mg’ei)] * P(wi)f(xnlﬂ:-l’ [Xs]n-l’ei’wl;)
z J#i (1%)
r=1 f(xnl {XS}
“'H(xs)n REICHE Nt S I
0" 1}: [ P, )ff(xnlws,e )26 Ea ,{xs}n_l,ei)dej ] + P(wi)f(xnl 8, ,w;)
) '
n-l
- £ X}, o) (15)
PG (X)), )EG, |2 )
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where we have assumed conditional independence and f(Xn‘w:lr,ev) known for v = 1,2,...,m.
Interchanging integration with respect to both summation signs in Eq. (15) gives
£(o;1(x.},)
-l

[...] T %, rzl [éﬂp(w 20 [05505) + Ploy 208, ol 0,) ] PO (X))

£00.3544-0;1 (X} u;"l) (16)
(X, (X)), 15 x’;'l)
The outer summation is removed by the inverse operation to that used in Eq. (7) to
obtain
?(e;1{x ) =
a7)
.. IT{ a8, [ZP(w Y0 |w3,0,) + Ploy )X, |y, 0 )] f({e ) 31201 X y)
J#i n sTn-l)
S A PR PN "
9 £(x (X)) ;)

Thus an equivaelent form of the optimum, growing solution is an iterative solution
which computes the marginal a posteriori densities from the joint a posteriori

probability density according to Eq. (18) where

. n
f(xnl{ej}#i,ei) =z P(w )E(X |m 6, ) + Pw, )2(X |w;56,) (19)
A
is a mixture of conditional c.d.f.'s, f(anw:,GV), and mixing parameters P(mv), v=1,2,...m.

A basic approach to this nonsupervisory problem is thus to start with Eq. (18) using

the mixture expression of Eq. (19) and compute
n+l n+l

In general, f(ail {Xs}n) is computed in terms of the joint probability density,

£(6, --.0_| (X at the n-1% stage.

s}n-l)’
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C. SYNTHESIS OF OPTIMUM RECEIVERS FOR M-ARY CHANRELS WITH EXTENSIVE INTERSYMBOL
INTERFERENCE

J. C. Hancock

R. W. Chang

This study 1s a continuation of the work reported in "Annual Report of Research,
Grant NsG-553, Jan., 1965"1’2.

Due to the ever-increasing data rate in high speed digital communications, one
has to deal with intersymbol interference in certain circumstances between not just
two adjacent time periods, but quite a number of adjacent time periods. New results
in this study are:

1) An optimum receiver structure is obtained for the general case of m-ary
channels ‘with intersymbol interference between a large number of observations.

2) A new concept of a posteriori weighting matrix is introduced which holds
for the general problem of observing a markov source through a noisy channel. A
matrix chain is derived showing a procedure of modifying a conventional markov chain
equation with the a posteriori observations.

3) A new concept of sufficient decision statistics 1s introduced. A theorem is
derived which shows how to obtain optimum receiver structures that can be implemented
in practice.

Although the discussions in this study are phrased in terms of commnication
channels, the methods and concepts are completely general and can be applied to other
problems. Since a markov chain of order I > 1 can be reduced to a markov chain, it
suffices to consider a markov chain.

Consider a digital communication system in which a sequence of independent
m-ary signal digits Bl, .o .,Bn is transmitted with known & priori probability.
Because of the high data rate, there is intersymbol interference between L time
periods (for example, L = 5). Let Sk(t) be the total received signal in the kth

time period, and denote the classification of Sk(t) by A.k It can be shown that



Al’ Az, .. ..,An form e markov chain.

In this study, the waveform of each possible Sk(t) is known. Sk(t) is
contaminated by noise Nk(t) The receiver observes Xk(t) = Sk(t)+Nk(t). Assume Xk(t)
is sampled, and let Xk, Sk’ and Nk be the vectors of the samples; Although the noise
is not necessarily gaussian, the probability density function of Nk is known. The
samples in Nk need not be independent; it is only assumed that the random vectors
N

l, LI 4 l,
To classify the m-ary signal digits Bl, cene Bn with minimum probability of error

Nn are independent.

after recelving Xl, Xn, the optimum receiver computes P(x = n:j/Vn), J=1,..0s mn,

and accepts the hypothesis x = L

where 1t = (Bl,...., Bn) and V= (xl,...., xn).

The optimum receiver constructed in this menner will compute mn probabilities.

if P(x = ni/vn) > P(n = nJ/Vn) for all j £ 1,

Since m" increases exponentially with n, it is practically impossible to implement

such a receiver for even moderate values of n (e.g., m =2, n = 20). To overcome

this difficulty, it is important to observe that if the probabilit& of error is to be
very small, as it is in most practical systems, the a posteriori probability P(n = :t,I/Vn)
corresponding to the true classification "'1‘ must be close to unity for large vé.iues »
of n(e.g., m = 2 , n = 200). This observation leads to the following theorem.

Theorem; Let x,, be the true classification of n. If P(x = :rT/Vn) > %, a

T
condition usually satisfied in practice, then the optimum (minimum probebility of
error) 'receiver can be constructed from the following decision rule:

Compute the probability P(Ak = ;]/Vn) ,d=1,...., mL, and accept the hypothesis
A =11f 1>(Ak = 1/vn) > P(Ak = len) for all j £ 1.

According to this theorem, P(Ak = ,j/Vn), k=1,....,n, J=1,...., n” form
& set of sufficient decision statistics for optimum decision under the condition
P(!t = :rT/Vn) > % The importance of this theorem lies in the fact that it introduces

the new concept of sufficient decision stetistics. By this concept, one can reduce



e multi-dimensional decision statistic (such as n of n dimension) to & decision
statistic of lower dimension (such as A of one dimension), +thus greetly simplifying
the data processing procedure. As will be shown in the following, P(Ak = j/Vn) can
be computed with a fixed receiver structure which does not grow with n. This
receiver structure is simple and can be implemented in practice.

Comparing P(Ak = J/Vn) is the same as comparing P(Ak = j/Vn) p(Vn). It can be
shown that P(Ak = ,j/Vn) p(Vn) can be broken into two terms. The first term is
P(.l\k = .j/Vk) p(Vk) in which the pest and present observations V, = (Xl, e Xk) are
utilized in clessifying A . The second term is p(Uk/Ak = j) in which the future
observations Uk = Xk-l-l’ ceany Xn are utilized to classify Ak Thus, the future
observations can be handled separately for any value of L. This conclusion is contrary
to that in Gonsalves' report3.

The first term P(Ak = J/Vk)p(Vk) is now studied. Derivations are omitted. Only

results are given. Define four matrices:

(2(a, - 1/v,) p(V,) | " R(a = 1) )
P(x) = | P(a, =2/v,) p(V,) ’ P o= | P(a =2)
B(8, = n'/V,) p(V,) | | By - n")
L(K) = " 1=()\:k/_¢\k =1) o e e o h
o P(xl‘/Ak = 2) . . . . . ?
: : L P(x/a, = 2")
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I
B

2). ... .P(a =1/A
2). . . . .P(a =2/A ;

1) Pl - 1/ay
1) Pl = 2/Ay

(P = 1ty
P(K,k-1) = | P(A, =2/A ,

f
f
"
]
=

| 2(a, /Ay =1) P(a =m/A_j=2). . . . P(A_ =m/A ) = mL)/
We obtain

P(k) = L(k) P(k,k-1) P(k-1) (1)
Note that Eq. (1) is in iterative form. Iterating Eq. (1) gives

P(k) = L(k) p(k,k-1) L(k-1) P(k-1,k-2)......... L(2) P(2,1).L(1) P
(2)

Equation (2) is an lmportsm result. The matrices P(k,k-1), P(k-1,k-2),...,P(2,1),
and P_ in Eg. (2) correspond to the transition matrices defined in the markov chein
study. They provide the a priori information concerning the classification of Ak
because their elements are given a priori probabilities. The other matrices L(k),
L(k-1),...., L(2), and L(1) in Eq. (2) can be termed the a posteriori weighting
matrices:. They provide the a posteriori information ebout the classification of Ak,
as their elements are the likelihood functions computed from the observations X;,..., X .
The a priori and the & posteriori information can be handled sepArately and then combined
as in Eq. (2). As fer as the authors are aware, Eq. (2) has not appeared in the past.
It is not possible to describe the related results and generalizations here; they will
be included in a technical report (also in a paper which has been subtmitted to IEEEb').

The‘above considers the first term P(Ak = j/Vk) p(Vk) of the decision statistic
P(Ak = J/Vn) p(Vn). The second term p(Uk/Ak = j) of the decision statistic can be
computed from the equation (derivations omitted)

Q(k) = PT(k+1,k) L({k+1) PT(k+2,k+l) L(k+2). ....PT(n,n-l)Ln (3)

where PT(k-!»l,k) is the transpose of P(k+l,k) and




1k

[ P(u /A = 1) [ p(x /A =1) ]
Q(k) = P(Uk/Ak =2) and L = p(Xn/An =2)
P(U, /A, = u") p(X /A =n")
Equation (3) can also be written in iterative form as
Qk) = PT(k+l,k) L(k+1) Q(k+1) (%)

Decision statistic P(Ak = j/Vn) p(Vn) cen be computed by combining P(k) end Q(k).
Decision rule cen then be applied to classify the observation Xl""" Xn' This
completes the data processing procedure.

It can be seen from Eqs. (1) and (4) that only two metrices are involved in each

iteration. Thus, the receiver structure is fixed and simple, and can be implemented

in practice.

REFERENCES

1. Hancock, J. C., and Chang, R. W., "Unsupervised Learning Receivers for Binary
Channels with Intersymbol Interference,” Proc. IEEE Symp. on Signal Transmission
end Processing, New York, N. Y., May 1965.

2. Hancock, J. C., and Chang, R. W., "Unsupervised lLearning Receivers for Binary
Channels with Intersymbol Interference", Electronic System Research Laboratory,
Purdue University, Lafayette, Ind., Technical Report No. TR-EE 65-2, Jan., 1965.

3. Gonselves, R. A., and Lob, W. H., "Maximum Likelihood Detection in a Binary Chennel
with Memory," Northeastern University, Scientific Report No. 4, July, 1963.

. Chahg, R. W., and Hancock, J. C., "Synthesis of Optimum Receivers for M-ary
Channels with Extensive Intersymbol Interference," Submitted to IEEE Transaction
on Informstion Theory
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D. COGNITIVE SIGNAL PROCESSING

J. C Hancock

W. D. Gregg
1. Review of the Research

This research is motivated by the vast requirements for processing the following
clesses of signals:

(a) Signals of electromagnetic origin; multiple category radar echos for
discrimination of radar cross-section signatures (missile-decoy cross-sections, clear
air turbulence cross sections, fine structure characterized surface cross-sections,
eth); signals arising in digital data links which have experienced random multiplicative
fading and beam splitting (multipath) with phase dispersion.

(b) Signals of acoustic origin arising as a result of medium sounding for
structure of object detection and acoustic cross-section discrimination as in
seismic or submarine sounding or passive detection of submarines and other acoustic
sources.

(¢) Afferent signals of bioelectric origin which contain the features and
signatures of a physical environment encoded by the sensory transducers.

The research is currently* concerned with the problem of optimum (defined below)
signal processing when

(a) Statistical and deterministic features of the categories (disturbance and
signal) are unknown.

(b) Classified or supervised time slots (classified learning sequences) are not
available for a priori estimation of the above features.

The initial investigation has been restricted to the "low pass” two category or

binary case which might be represented by any of the waveforms below,

*¥Purdue University, Electronics Systems Leboratory, Annuel Report of Research, Jan.,
1965, p. 15.




(a)

(v)

(c)

Fig. 1

2. Approach to the Problem

An attempt has been made to approach the problem by applying the fundamentals of
mathematical statistics pertinemt to discriminant function theory and generalized
hypothesis testing. The initiel assumptions are

(a) N discrete vector observations (sampled time slots) available for processing.

(b) V of the vectors are from wl and W of the vectors are from mz with V+W =N
and (Dlu 0,)2 =Q:En

(c) The proportionality factors V and W are not known and the vector sequence
2= {gn} is not classified.

The principal difficulty in unsupervised or unclassified discrimination (dichotomiz-
ation in the two category case) is due to the lack of a reference for "comparing" the
Zig 8 situation that does not exist in the classical hyper-plane (Bayes discrete
matched filter) case or the supervised case. Thus the "reference" must be generated
from within the time series.

The strategy used to establish a "reference" from within the time series consists
of testing successive data vectors against the preceding data vector using all prior
data vectors for information content about the parameters of discrimination. The

tests can be either parametric or distribtution free. The parametric tests are carried
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out via the generalized likelihood ratio test given by

i+l =1’
ng P (Zi’zi+l'zi 1 'Ei) Max L{Q)
9_1)_9_2}6

i,i+l=1,2 ; 3=212,..., M
The optimality of the generalized likelihood ratio test lies in the fect that if
a uniformly most powerful (hence minimal probability of error) test exists, it is
given by A (z ’—¢+1'Z) A useful practical aspect is due to the fact that -2 log kj
is asymptoticelly chi-squared. Hence successive isolations and separations of the

data vectors occur as the null and alternative hypotheses Ho’ Hl are designated by

the values of *3'
It is appropriate to point out that investigations and analyses of other classes
of Bayes approaches other than the classical Bayes approach are considered for the

following reasons.

() The "classical" Bayes approach requires the computation of

Plzgy 1Z50) = [ Blzg,, ((6)50, )P((6) |Z5u,) 2@} (2)
Re)
1=12 ;5 2=(z) |
where {6} is the multidimensional set of parameters of category i including the location
parameter 6.
(b) For the classified, supervised, or the "learning with teacher" case, the
posterior density kernel of the assumed random pasrameter {8} is
h((6}|Z;w;) = n({6)) n(z|(6} 5 w,) (3)
where h ({6}) is the prior kernel of {6} and h(gl{e};wi) is the kernel of the likeli-

hood of Z given {6}. For the assumptions of a conjugatel prior kernel on {6}, the



posterior kernel h({6) I_Z_;mi) is of the same form (reproducibility), however the prior

or learning sequence must be classified. The likelihood P(z

Zx+ LZ_;Wi) need not have

the same form as the posterior kernel.
(c) For the unsupervised, unclassified, or'without teacher™ case about the prior

sequence 2, the "classical" Bayes form upon expansion of P({6)}|2) has yieldeds .

(1) P({6)]2) containing 2" terms as & result of a Bayes expansion conditioned
upon all possible formats of the sequence Z = {gn] requiring BN computations or the

o likelihood structures”.

equivalent of "2
(2) P({6}|2) expanded in a particular manner with particular assumptions and the
introduction of a mixture expansion at a particular stage effecting & recursive form
requiring computations over all possible {6}.
In both exponential and recursive forms, the final result is not unique and
depends upon the order of intermediate assumptions and manipulations. Thus in addition
to the less desirable properties of requiring 213I computations or computations over all
possible values of {6) (campletely different averages) , the final form does not appear
to be unique.
3. Physical Filter Interpretation of Cognition and Learning
It must be indicated that the assumption of N sampled time slots, z 3 assumes
time slot synchronization as well as & knowledge of the category duty cycle tv. Thus
the argument might be posed that & knowledge of the duty cycle allows the selection of
a +ime constant for a simple first order low-pass RC filter with continuous filtering
Yielding a degradation of only 1 db in the ratio of peak pulse power to mean square
noise voltage due to mismatch. This would be true if the signal pulses were square
and this fact was known; however, if the pulse shape is more complex, such as & -
sawtooth pulse of equivalent energy, the "optimum" time constant differs considerably
from that for the square pulse (see Fig. 2 where w, is the 3 db filter radian frequency).

Thus a selection of the "optimum" mis-matched or sub-optimum first order matched
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continuous filter on the basis of pulse duty cycle would result in an unnecessary

degradation of SNRO. This effect observed for the cases of rather simple low-pass
signal structure in additive white noise certainly Jjustifies the attempt to "learn™
the category features, characteristics, or signatures.

4, Current Results and Conclusions.

A portion of the initial effort has been devoted to a study of the behavior of
the power function, 5(—5-/4_6;) , for a given significance level of "one shot™ vector
sequence dichotomizetions of waveform (a) on the basis of statistical feature

dissimilarity about the location parameter 8 under the following conditions.

(a) Means, 85 gz unknown, variance 93 known; Parametric (Geussian)
(b) Means, 8,, 8, unknown, variance 93 unknown; Parametric (Geussian)

(¢c) Non-Parametric (Distribution Free); Sign Test.

This portion of the analysis has been concerned with the degradation of the power
of the test during the degeneration of the model from the parametric case with 93
known to the parametric case with 6. unknown to the non-parametric case. The behavior

3
of the power function of the test statistic A, for the one shot case is illustrated

J
in Fig. 3. The power function of the hyperplane decision boundry is included for
purposes of comparision. The test statistic for the parametric cases, (a) and (b),
is computed on the basis of a two-sided composite alternative, whereas the sign test
can only be computed for & one-sided composite alternative. Since the power associated
with a one-gided alterative is generslly higher than that for a two-sided alternative
when tests are sbout thc same parameter, the plot of the power function for the non-
parametric case in Fig. 3 exceeds the corresponding plot for the parametric case with
6, unknown for certain values of é/hr'}. The consequent degradation of probability

3
of error of the second kind can be extracted from Fig. 3 as

p=1-p® 63) (&)
with the probebility of error of the first kind equal to the signficance level Q. ‘

The extension of & dichotomization strategy from a "one shot" form to & recursive
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form is essential in order to effect the property of cognition or learning in signal

processing. The concepts of classical sequential decision theory are of practically

no value as developed, since the only intermediate decisions made therein are whether
or not to continue observations of the scalar or vector samples. In order to realize
the property of cognition or learning, it is:

(1) Intuitively felt, for the category model currently being investigated, that
successive dichotomization on the basis of statisticel similarity about & location
parameter 6 with & reduction in the uncertainity about the dispersion or covariance
matrix pareameter © should give rise to an increase in the power of the test for given
actual parameters with an increase in the length of the sequence observed (see
hypotheticel dashed line in Fig. 3).

(2) Necessary that the recursive form of the dichotomizing test statistic
reflect the reduction in uncertainty about the parameters (g, o).

In order to introduce the recursion based upon past observations into the current
test statistic form, it is necessary to assume an abstract prior sequence Zo . Then
for the assumption of & uniform prior kernel, h{({6}), in (3), the posterior kermel is

3

of the Wishart form®. For an assumption of a Wishart kernel h({6)}), the posterior

form is the mmltivariate form of the Pearson Type VII,

N
1 -
Pz |2,) = 2(n, 0,5y ) (5 Uo) 7 (5)
where ) n N
—— o\
f(n)NO)SN ) = (2r)2 TC?)
) - o
r CNO ") < _oN2
2 2 v/
Qo = (2, - 8,055 (2, -8) 1=1,2
0 =1 AN 1 A ?
In L(w wz) then becomes (6)
No Q’.‘LO QZO
In L(e;N\w,) = -nln2n + Lnf(n,No,SNo) - Ln|SNo| - (In (1 + f] +1In (1 + ‘ﬁ:‘ 1)

To obtain Max L, it is necessary to extend the abstract sequence, _Z_0 , over a
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negative half line in order to obtain the asymptotic form of the Pearson Type VII

kernel.
Thus
(-
Lm(.!?ﬂ)m(]_-_ﬁz_o_ =-.]:i12 i=1,2 (7)
2 N 2 2
o
N =—o
o
Lim ILn f(n,No,SNO) =0
N »—-o
o)
and by proper factoring and combining, (8)

Lok, (0N w,) = -nlnzx - In|s_+© | 4R 5,(s,+©) - S (Z - 9) E@-8)(s +O)

Where
J
= - - ' =
SJ = z (E-k 21) (-Z-k _9_1) J = 2 for first two samples
k=1
3lnL, .. (w.Nw,_) z, + 2
asy %y’ %2 _Aa T3
Now TR = _glM ===—=-z (9)

and for (So + e) positive semi-definite and S, positive definite, the maximum of In

J
LASY(wl f\wz) with respect to the matrix paremeter © occurs for

B =2 ssl -8, (10)

1
ielding Max In Nw,) = (1
e o e (%) T o )

A similer abstraction, limiting process and factoring for (_6_,6 ) ranging over the
unrestricted space Q1 yields
1

Max LnASYL(n) =
n

S S + !
.9.]_’ .e_g)e (ex) ' Al M A2 + 2_2_0(21 52) ‘

(12)
vhere Z, 1s & residual bias term as a result of the required factoring of LnLASY(Q).

The test statistic for the "dichotomization" of the first two observations, 4
252,55 is thus

1
'SAl S, 22,(2) + 25)"
1ST j =l,2,.».,N (13)
J S

XJ (_2,1)5,2) =
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where SJ is given by (3) and S ,SAz ere individual auto-covariance matrices.
The steps necessary to incorporate the informetion about the parameters g,€3
gained during sucessive observations have thus been developed for the initial
Observations. At this point, it is only intuitively concluded that successive tests
for dissimilarity, dichotomization, will result in an increased power, s(§/4f3;),
with successive observetions reinforcing the parameter Sj. It must be pointed out
that if a UMP test statistic exists for the intended dichotomization, it is given by
Xj, however only for the "class of tests' based upon a test for dissimilarity about
a location parameter 6 with a common dispersion matrix O for the two categories or
populations.
Further work will include extensions to the mth observation, refinements and
analyses of boundedness and convergence, tests about other parametersand generalizations

of the category models in an effort to establish the form of a recursive decision or

operator structure required of cognition or "learning" without supervision or 'teacher".

Hyperplane or Matched Filter

o lo7 R
/M 1 S~ 1 - g
A4 4 L 8l d
¥ * /&n
% 11 on Paremetric
5 3T - 6 0, Uninown
£ Sl
.O
D o2+ 4l 6_ Known
7 3
g | 3
g .31
w 11 Sawtooth 21
& Pulse |
O:*;:}-;.:}::::;_‘,u;ri o) —
o) 0.5 i.o 1.5 2.0 o 1.0 2.0 3.0
w 1/2xn 5/ [ 6.
Fig. 2 c Fig. 3 3
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II. ADAPTIVE SYSTEMS
L.  GENERALIZED KINEPLEX

P. A. Wintz

It is well known that the optimum (minimum probability of error) detector of
known antipodel signals s(t), - s{t), o <t < T in white gaussian noise n(t)
correlates the received data x(t) = + s(t) + n(t) with a stored replica of the
signal, and announces a decision in accordance with the sign of the correlator output
at t = T. When the signal waveform is not known a priori, it may be reasonable to
design a receiver capable of learning the unknown signal waveform and correlating
the received data with the learned reference signal r(t). If the reference waveform |
is constructed from K past bauds according to the decision-directed measurement
strategy (see the Annusl Report of Research, January 1965, p. 20) the system error
rate is given by

Prob[d.o < 0|s(t)] Prob [s(t)] + Prob [db> 0|-8(t)] Prob [e(t)]

N
where:

r (t) = x (t) + i ?31_ sgn (4,) x,(¢) ;

(-3+1)T i=1
dj = J:jT xj(t) rj(t) at.

In Fig. 1 shown below, xi(t) and ri(t) represent the data and reference waveforms

during the i-th signaling interval.

x () x(t)  x(t)  x ()
rK(t) rz(t) rl(t) ro(t)
- + -+ : ; 4 4 |
-KT ’ wo y 2T -7 o ¢ *®
g.

By sampling the waveforms xi(t) and ri(t)N times in each T-second interval, d, can

J
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b 3 |
e approximated by the sum dj A x,j(ti) rj(ti)

This formulation is suitable for Monte Carlo simulation on & digital computer.
The results of this study are given in Fig. 2 where we have graphed the probability
of error P, as signal-to-noise ratio R = sz(ti)/z nz(ti) for verious values of
measurement times K and numbers of sampli; N.

An analytical analysis of this problem is also being attempted. Severe
mathematical difficulties are encountered since the decision-directed measurement
strategy is inherently nomiinear. Therefore, for measurement times greater than
unity (X > 1), the noise associated with the reference signal is nongeussien. Another

problem arises because of the noise-cross-noise term associated with correlators

using noisy references signals. It has been shown that for N = 2,k4..

N
Prob [ z (si + ni)(a 8y * mi) < 0]

i=1
e 2 (5‘E I*Le (1482 )E/B]k \ij +2k+N+lL+n 3
1 N 1
= S-e (—l(l+a JE/2] y z G+ 1)k L 3+k4— 2 ( d
,j:O k=0 n=0

N

where E = 21 si, and ny and m, are independent zero mean unit variance geussian
=

rendom variables.
Finally, an interesting identity was discovered in the course of the theoretical
+m
analysis. This identity, y (am 2’(0‘“") =1, a = 0,1,2,... to the author's
n=o

knowledge, has not been noted previously.
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B. SELF-SYNCRONIZING RECEIVERS

P. A. Wintz

E. J. Luecke

Investigation of digital communication systems under a variety of conditions
and situations has shown that correlation techniques are required to achieve optimum
performance. To implement a correlation receiver, it is necessary to know the epoch
of each signaling period and the wave shape of the members of the signal set used
in the system. For optimum results, correlation should be done at band pass. To
generalize the problem, it is convenient to consider the frequency and phase of the
"carrier" as well as the low pass wave shapes of the signal set as part of the signal
waveshape. The problem of supplylng to the recelver these parameters is not triviel
under the reasonable constraints of maximum power, bandwidth, and signaling rate.

In one sense, the sub-optimality of a digital system is determined by the way

in which the designer of the system desensitizes the receiver to the parameters of
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epoch and waveshape. To obtain optimum detection, the receiver must have these
parameters. It is generslly not possible to build into the receiver all of these
parameters. Usually the only available parameter is the functional form of the low
pass signal set. Thus, it 1s necessary for the transmitter to supply to the receiver
the remaining necessary parameters. This process of bit synchronization is usually
achieved by transmitting extrs signals at the cost of total power and bendwidth.

The objective of the present investigation is to determine if measurements taken
on the received signal will permit the determination of the epoch of the signal bits.
If this is possible, the energy and bandwidth which is saved can be used for the
improvement of the signal to noise ratio or the signaling rate. To simplify
experimental procedures, the band pass case 18 not considered. Instead, the assumption
is made that some demodulation scheme has supplied the low pass signal and additive
noise.

400
Consider the demodulated signal s(t) = z s’;(g) where s’;‘(g) = s‘(‘)‘ (t -1 7T)

i =
for 1 T<t < (1 +1) T and vhere S(A), m = 1,2, K 1s the m'" signal of the k signals
in the signal set. Assume that there is a probasbility distribution on "m" and the
signals are transmitted independently.

Apply this s(t) to a linear system which has impulse response h(t). The output

of the linear system can be written as

t-1T
Ae) = [ sMEm(-1 T-g)ag + iS‘Ld(g)h(t—ti -dal T-¢g)a
o B

d=1
vhere 1 T < t < {i+1] T.

The desired response is any one which gives an indication when t = (1 +1) 7.
A 1ittle reflection on the form of t(t), remembering that sm(g) is randomly chosen
frow. the signal set, indicates that no linear operator will do‘the Job.

If, however, some operation can be performed on the s(t) before applicationto

the linear system so that each §m

4-q = f‘ST;d) is identical, then a linear system can
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be implemented to obtain epoch information. For the special case of binary antipodal

signalling, the class of operators y = £(°) is given by all even functions.

The periodic signal which results from this "even function" operation may be
determined by Fourier Series analysis. The zero crossings of the fundamental
component of this signal are analytically related to the epoch of the bit. Bandpass
filtering at the fundamental frequency will provide the desired epoch information.

The addition of noise to the input signal causes severe complications to the
analysis of the system. At high S/N, the design objective would be to determine the
combination of signal wave shape and nonlinear operator to provide maximum power at

the fundamental frequency. At low S/N, the effect of the interaction of signel and

noise in the nonlinear operator is not, in general, known. Under this mode of operation,

the design objective would be to maximize the ratio of signal power at the fundamental
to noise in the band around the fundamental. It is not apparent that the low S/N

solution will be the same as the high S/N.

Because of the lack of analytic and experimental results on the distributions
and spectral densities which result from nonlinear operations, the present point
in this project is obtaining data for a number of representative signals with various

S/N and representative nonlinear operators.

C. ADAPTIVE PROCESSING OF TROPO-SCATTER DATA

P. A. Wintz

M. D. Shapiro

In this experiment, certain of the concepts discussed in Part A of this section
are belng used to process binary dete transmitted over the Purdue-Collins Redio Co.
tropospheric-scatter link. The received data are first time sampled and the samples
stored on magnetic tape. These data are then processed in various ways on Purdue's
7094 Computer. Computer programs have been written for the following detection
strategies:

1. The binary information is differentially encoded, and the received data are



correlated with a reference signal. For fgmeasurement time of one signal duration,
the reference signal is simply the data received during the previous baud. For
measurement times greater than one signal duration, the data from K past bauds
are used to form a reference signal according to the decision-directed measurement
strategy.
2. This process is similar to that in 1, except that a nondecision-directed measure-
ment strategy is used to form a reference from the K pest bauds. Each semple of the
references is taken to be the sample mean of the magnitude of the corresponding
samples of the previous K bauds.
3. In this process the received data are correlated with stored replicas of the
transmitted signals.

These programs have been debugged and used to process data originated in the
laboratory. Processing of actual tropo data will start in September, 1965. All

processing is being done at baseband.

IIT. SIGNAL DESIGN
A. TROPO-SCATTER SIGNAL DESIGN

D. R. Anderson

In the design of signals for a verieble communication channel, the central
quantity is the ambiquity function which is defined for any pair of signals sl(t)

and sz(t) by the formula

X, pl0,7) = jw 5, (t) ,(t + 1)eat (1)

-0

Al though Xi, 2(u),'r) originally arose in the analysis of radar observations of a fixed
object by a matched filter, Price and Green:L showed the importance of it in multipath
communication in their analysis of the Rake system. The same authors have since
pointed out the importence of [xl’z(m,'r)lz for scattering and nmltiﬁa.th channels
even vhen optimum detection does not require matched filters. They have shown that

figures of merit for a signasl set are 1) rectengular white-noise-like spectrum for
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every member, 2) uniformly small ambiguity functions for every pair of members, 3)

&8 sharply peaked self-ambiguity function for each individual member.

For any peir of equal-duration signals one can find a basic lower bound in terms
of time-bandwidth products for the time r.m.s. value of their cross-ambiguity function.
If we call an arbitrary pair of signals sl(t) and sz(t), their common time-duration T,

and their bandwidths Bi and B,, the bound is given by:

2
N T , k2 1/2
m;x [-,f J:T|Xl,2(m,'t)| dt] 2'2‘/ (ZTB]_ + ZTBZ) (2)
This shows in particular that we have:
1 1/2
max (max [X, ,(0,7)) 2 3/(2T8, + 2T8B,) (3)

w T

; 1l 1
That is to say, the global maximum of |Xl 2(w,r)| must be at least -2-/(2TBl + ZTBZ) /2.
)

Since one can construct realizable pairs of signals for which le 2(m,‘r)l is no more
b4
1/2
then 5/ (2TB,+2TB,)

function can be.

,(2) gives fundamental informetion sabout how small a crossambiguity
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B. DIGITAL COMMUNICATION SYSTEMS OPTIMIZATION FOR CHANNELS WITH MEMORY

J. C. Hancock |

E. A. Quincy

1. Re-Statement of the Problem

The specific problem considered in this research is the optimization of entire
binary communication systems, i.e., joint optimization of the transmitted pulse wave-
forms and the receiver vwhen the channel response is time-invariant and known. Also,
the channel is assumed to exhibit sufficient memory such thaet intersymbol interference
results at the receiver. The criterion of optimality considered is minimum average
probability of detection error. For recent literature pertinent to this problem see

Refs. 1,2,3, and 4.

sl(t
Known z(t} m X(t) _9 hl
Channel J Receiver
7
° h(t) = X —r 5
5,(t)
n{t) N
Zon? E-o

Fig. 1 Binary Communication System Model

Figure 1 shows a model of the binary communication system considered in this
research. The additive noise is assumed to be gaussian with zero mean (AGNZM) and

covariance gﬁn. Also, the received signal is assumed to be representable by a finite
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sum of weighted basis functions such that the weighting coefficients are a k-dimensional
vector denoted by a bar beneath an upper-case letter.

2. Initial Approach

An ideal approach to this problem is to derive the Bayes receiver from the Maximum
Likelihood Ratio, A(X), for arbitrary transmitted signel waveforms, sl(t) and sz(t),
of length T and an arbitrary time-invariant channel with impulse respohsé h(t). Tﬁen
ideally, the average probability of error Pe would be derived for this receiver. The
resulting Pe would be a function of the received signal energies E, of all possible
cross-correlations of the two desired sighal wave forms with all possible combinations
of received sequences of overlapping pulses, and of the noise covariance matrix ﬂhn
and the known impulse response h(t). Hence for a specific impulse response and hoise

we can denote
P, = £(E, £) = g5, (t), s5,(t)] (1)

With an explicit expression availeble fbr Pe it would then be a matter of applying
variational techniques to minimize P; with respect to the transmitted waveforms with

constraints that fix the input energy to the channel, i.e.,

B = g8 (8), 5,0)] } (2a)
with

T/2
f élz(t) at = E (2v)
-1/2

T/g
J s2(t) at = E, (2¢)
-1/2

For a received signal Z and AGNZM noise N, let the received waveform be

X=2+N | (3)
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Then the corresponding Maximum Likelihood Retio for M baude of overlap of the received

signals is

P, P(Xls.,
P(xls,) 121 L FElehy)
Mz) = as,) Tz (%)

21 P, B(Xls,,Zy, )
where the receiver observation period is [0 - (M + 1)T] and
r = 2214 (5)

is the number of possible waveforms that could be received on this observation period

given that s, was sent at the beginning of the observation period. For the AGNZM noise

i
considered (4) becomes N N

I X - 7)) - 5y)
L R G

A(x) = &% (6)
& B EE - By )W (X )
L @,
L xT ‘5 2% —-11‘a Zli
i= Pi

= i= (6e)

c - 1 1
2 Py 2‘-T‘Z“nn 22172 Zei’”-nn Zpy

i=1

The first term of the exponent, in both numerator and denominator, of (6e) represents
cross-correlation of the received waveform with one of the possible waveforms weighted
by the noise covariance. The second term is & form of energy to noise ratio for this
particular waveform. In general the receiver corresponding to the likelihood ratio
(6a) is very non-linear and complicated. Even though the receiver could be implemented

in its complicated form, the analysis of the performance is non-tractable due to the
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non-linearities. Hence the expression for probaebility of error,

P, = g[sl(t), sz(t)] (7)

desired in order to have an overall system functional to minimize, cannot be obtained
unless further simplifying assumptions are made.

3. Alternate Approaches and Results

Since the above approach leads to a formidable problem, i.e., obtaining the
functional (7), other approaches were pursyed which circumvent this problem.

3.1 Special Cese (Linear Bayes Receiver)

Upon investigation of
A'(X) = log A(X) (8)

in (6a), there are special cases of interest which reduce A'(X) to a linear form.

For example, the case of an RC-low-pass channel with adjacent baud overlap of received
signals (M = 1) and equally-probaeble, bipolar signals 8ys sz. In addition if the
received waveforms on (-T/2 to 3T/2)

éli’ 221 ; 1=1,2,3,4 (9)

ere all equal energy then xv(g) was shown to reduce to the linear form

A(X) =2 X (10)

where gi is the channel output corresponding to a single-shot s, input. Also upon

>

1
investigation of the equal energy sequences condition, it was shown, by Quincy”, to

occur when the head and tail of gl were orthogonal. Hence in order for this linear

form (10) to be a Bayes receiver, the signal s, should be designed to maximize energy
transfer through the channel with the constraint that the head and tail out of the channel
are orthogonal. For this bipolar case

8, (t) = - s,(t) (11)
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The average probability of error was derived for this case of intersymbol
interference with the additional assumption that the nolse was white with spectrsl

density Nb and band-limited to the signal bendwidth. The resulting probability of

error was
P=8(-]%) (12)
(o] .
where
3T/2
E Z(t) at (13)
2 IT/Z 1)
and
t _52
& (-t) A J e 2 /dﬁx:\ (1%)

Variational techniques have not thus far yielded a solution for 8y above. However,
Chalk6 showed that the signal which maximizes energy transfer for the RC channel with-

out an edditional constraint is
T
= —— < <
s,(t) =A Cos wt, -5 <t < T/2 (15)
and 1f this is shifted il phase by a specified amount, i.e.,

8,(t) =A Cos (nt+96), -T/22t<T/2 (16)

1

then the head and tail will be orthogonal. Unfortunately the energy transfer is reduced
as 0 1s changed from zero. This procedure yields a simple linear Bayes receiver for

a special case of intersymbol interference. However it does not yleld an overall optimum
system, only sn optimum receiver for these signals. If the optimun signal can be found
vhich maximizes energy transfer with the constraint that the head and tail are
uncorrelated, it will be interesting to note how much energy transfer is decreased by

this constraint. From experience we would expect it to be decreased slightly. However,
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if the optimum signel trensfers the same energy as (15) while meeting the additional
constraint, then an overall optimum system will be obtéined°

3.2 Approximate Likelihood Ratio ;kg)

For the case of equally-probable signals 815 Sg) (6a) hes an interesting linear

approximation. Let (6a) be written as

Z i L[ 5w - ]

AMX) = g——m:e

Z [ £,(X) -g, (x)] Z[X 2, (le Zzi)";‘(?ili’”;xlz-z-li'zzi’”mrz-zﬂ]

x) =
(18) |
and
X(X) = Log A(X) (19)
= ZL 2, (Zli 2oy )- lZ(Zli 214 —21‘J 21 (19e)

Since (l9a) is & linear operation on X the receiver performence in terms of Pe can
readily be derived and variational techniques applied to minimize Pe with respect to
Bys Sge

It is interesting to note that A (X) in (18) is a consistent approximation as the

intersymbol interference is reduced to zero, i.e., for this case M =0, r = 1 and
A (X) = A(X) (20)

Also, log A(X) in (19) reduces exactly to that of (9) for the same cese considered
there.

The average probability of error was derived for a speciel case of (19a) i.e., for
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white noise of spectral density No’ band-limited to the signal bendwidth, adjacent
baud overlap only (M =1, r = 4) and a low-pass RC channel. The resulting probability

of error corresponding to the receiver implementing (19a) is

I ]

v )

"
DO

08

1. (E
'y Q:E; G- o) |
1. E . ,
+f Q..- -ﬁ: (1 + pht) ] (21)

where E is given by (13) and & by (14). The normalized head-tail correlation is given

by
/2
o - IT/z 2y (¢) :1(" + 1) at )
and
t
z,(t) = ‘-[T/z s () n(t - 7i dv (23?

Hence (21) can now be written as a function of s, and s, as in (7)

P, = g[sl(t), sz(t)] = g[sl(t), - Sl(t)] (24)

The ideal step at this point is to apply variational techniques to (21) to find

the optimum waveform s, which minimizes Pe with the constraint that the energy into

1
the channel is fixed. We realize of course that the resulting system would not
necessarily be the overall optimum system but could be, i.e., it is an upper bound on

the overall optimum system

P0
e

< p®
- e

(25)
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Also this probebility of error converges to the optimum system probebility of error
as p . tends toward zero; i.e.,
P2 —> B¢ (26)
an)o 7
as can be seen by comparing (12) and (21). Actually, the epproximate likelihood ratio
converges to the exact one in this case. Even though we cannot derive the analytical
expression for P: to minimize by signal design, we note from (25) that we will force
it smaller and smaller as we do minimize P:« Hence, if P: = P: for that case we have
the jointly optimum transmitter and receiver. If not, we can compare P: against PZ
obtained by aepplying Monte Carlo techniques to the exact likelihood ratio. Hopefully
this will show that P: is sufficiently close to P: for practical considerations.
In order to gein further insight as to the trade-off involved between E and Pht
and their effect on P: an ad-hoc approach was temporarily ensued at this point. The
signal which maximizes energy transfer for this channel corresponding tov(16) was

derived for 6 =0, i.e.,

Sl(t) = A cos (wct + 8), %5 % s% (27)

Next @ was allowed to vary and Al(e) was computed for each 8 since the energy input
was held fixed. Now the energy output E and Pt vere computed as a function of 6,

i.e.,

E =f (0) (28)

e, = £,(6) (29)

and eventually the probability of error was determined as a function of 6
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P2 = g(e) (30)

By allowing 6 to vary, the minimum in P: was found which corresponded to @ = -1&9.30.

Figure 2 shows a sketch of this performance compared to the Bayes receiver evaluated by

1c°
Single Shot Correlation Rec.
Pe
Monte Carlo Evaluated Bayes Rec.
Approx.likelihood Ratio Rec.
Eq. (21)
0.5 4db
10-5 + g07 db
1k
E/N_~ ¢b

Fig. 2 Sketch of Relative PePformance

Monte-Carlo techniques and to the single-shot case of correlation reception: Each

system had the same signal applied. It is especially interesting to note that the

Bayes receiver is only about one-half db better in performance at high signal-to-noise

ratio.
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